用户名: 密码: 验证码:

光通信有源器件的技术发展与突破

摘要:为了满足系统不断发展的需求,有源光通信器件的发展涉及到许许多多的技术,然而,近年来有几项技术值得我们特别关注:这包括40G/100G高速传输器件与模块技术、下一代光纤接入技术、光载射频ROF(Radio Over Fiber)器件与模块技术、光集成技术、高速互连光电器件与模块等等。

  ICCSZ讯 满足不断增长的带宽需求,同时不断降低资本和运维支出,将继续是推动光通信技术发展的两个主要动力。为了满足系统不断发展的需求,有源光通信器件的发展涉及到许许多多的技术,然而,近年来有几项技术值得我们特别关注:这包括40G/100G高速传输器件与模块技术、下一代光纤接入技术、光载射频ROF(Radio Over Fiber)器件与模块技术、光集成技术、高速互连光电器件与模块等等。

  1. 40G/100G技术势不可挡

  据有关专家总结,40G主要有以下四个方面的市场需求和驱动力:第一是TriplePlay,即数据、视频、VoIP等服务的融合;第二是数据通信以及海量存储网络; 第三是高速电信网络,如OC768,STM256,G.709FEC;第四是其他新兴数据需求。

  目前,40G的价格是其获得爆发式增长的主要障碍,不过,40G甚至100G的发展已变得不可阻挡。40G/100G的CFPMSA多源协议已经发布,由此向CFP的器件/模块开放了大门。而在此技术方面,高速光信号的调制技术作为一个关键的技术平台尤为重要,其中以DPSK、RZ-DQPSK和DP-DQPSK等系列调制方式为代表。

  2. 10G速率的PON引领下一代接入技术

  在光接入技术上, 国际上主要采用的是PON。在过去的几年里,PON主要以GEPON和GPON技术为主,主流的用户分配带宽达到10~40Mb/s,而在未来的几年之后,由于用户带宽需求的进一步增长, 则需要向下一代PON过渡。

  随着2009年9月IEEE802.3av国际标准的正式通过,10G EPON的有源器件的研究得到了飞速的发展, 目前, 10G EPON成为了下一代PON的最大热门。紧接着, 2 010年6月,10G GPON( XG-PON) 标准在日内瓦ITUTSG15全会上顺利通过,仅比10G EPON的标准通过晚9个月,由于在光器件技术上的相似性,XG-PON的器件发展也非常迅速。这两个国际标准为下一代接入技术定下了发展的基调。WDM-PON,由于具有潜在的技术先进性,无疑也会在未来的PON接入网中占据一席之地。由于各种PON技术的蓬勃发展,一种更大的可能是在未来的技术领域内,各种PON技术会逐步走向相互渗透和融合。

  沿着EPON和GPON的发展道路, 下一代PON技术将形成三大趋势: EPON向10GEPON演进;GPON向XG-PON演进;未来形成各种技术融合的PON。

  随着3G时代的来临,光通信产业可谓又风生水起,迎来了前所未有的机遇。光纤接入是迄今各种类型的宽带接入方案中,最具发展生命力的一种。

  3.无线与光的技术融合带来光通信的新机遇

  随着3G时代的来临,光通信产业可谓又风生水起,迎来了前所未有的机遇。光纤接入是迄今各种类型的宽带接入方案中,最具发展生命力的一种。我国90%以上的信息量是通过光纤传输的,特别是随着3G牌照的发放,我国迎来3G时代,光通信及相关光电产业正在成为带动整个信息产业的新的增长点。据估计,3G的启动可以带来1000亿元以上规模的光通信市场。虽然我们在技术上已经做好迎接3G的准备,光通信行业所面临的机遇毋庸置疑,但同时也要看到它所面临的挑战。

  从目前的情况来看, 未来的无线通信向LTE发展的方向已经相当明确。

  在此领域的光器件、光模块技术中,光载射频ROF光器件/模块值得关注。

  当前,对高速多媒体移动通信的需求不断增长,无线通信系统对宽带传输能力的要求也越来越高, 同时伴随着无线通信系统容量的快速增长,小区半径越来越小,微小区、微微小区数目迅速增加。另一方面,多种无线标准的存在又要求接入系统具备多业务操作的能力。中国已经开始了"无所不在的网络中国(U-China)"计划,如何解决建筑物内的无线高速数据传输和无线接入覆盖问题就成为迫切需要解决的技术关键。ROF无线接入技术成为解决上述问题的一项最有希望的技术之一。

  在ROF系统中,由于光载波上承载的是模拟的微波信号,与传统的数字光纤传输链路相比,其系统对光器件的性能以及链路自身的色散、非线性效应等都有更为苛刻的要求。

  尽管ROF技术距离大规模的商用还有很长的路要走,也有很多关键技术要攻克,但是,科学研究始终是走在技术产业化的前面。同时,光无线融合的大趋势是无法阻挡的,无论在现在还是将来,ROF都将是研究人员和运营商最为关注的一项技术之一。而对于ROF技术的研究,人们的目光也会由理论研究转向实际的应用,向更低成本,更高集成化努力。

  4. 光集成技术值得期待

  光集成器件由于其综合成本低、体积小巧、易于大规模装配生产、工作速率高、性能稳定等等优点,早在20世纪70年代就引起了世人的关注和研究。在随后的三十多年里,随着光波导制作技术以及各种精细加工技术的迅速发展,光集成器件正在大量地进入商用,尤其是基于平面光回路(PLC, Planar Lightwave Circuit) 的一些光无源器件, 如光分路器(Splitter)、阵列波导光栅(AWG)等等,目前已成为光通信市场上的热门产品。在光有源器件的领域中,有源的集成产品还远远未达到大规模的商用,但随着一些该领域中的先进技术如色散光桥光栅( Dispersion Bridge Grating)的成功开发,基于PLC的有源器件近来取得了长足的进步。

  光集成的技术发展方向主要可分为两类:单片集成和混合集成。单片集成是指在半导体或光学晶体衬底上,经过同一制作工艺,把所有元件集成在一起,如:PIC和OEIC技术;而混合集成是指用不同的制作工艺,制作一部分元件后,再组装在半导体或光学晶体衬底上。

  以前,Si基的混合集成的实际制作工艺一直是相当复杂的,但近来,一些研究机构对传统倒装为基础的混合集成工艺作了改进,取得了较大进展。其中,最能引人瞩目的成果有两项: 第一项是加州大学Santa Barbara分校与Intel公司合作研究的基于晶片(Wafer)级结合的混合集成器件; 第二项是比利时根特(Ghent) 大学的基于芯片(Chip) 和晶片(Wafer)结合的混合集成器件。

  近年来光集成的技术发展,使得其迅速成为光通信领域中非常值得期待的一项平台技术,可望得到极其广泛的应用。

  5. 高速光电互连技术超乎想象

  高速光电互连技术通过并行光模块和带状光缆或电缆来实现.并行光模块是基于VCSEL阵列和PIN阵列,波长850nm,适合50/125μ m和62.5/125μm的多模光纤。封装上其电接口采用标准的MegArray连接器,光接口采用标准的MTP/MPO带状光缆。目前比较通用的并行光模块有4路收发和12路收发模块。在当前的市场上, 较为常见的高速并行光模块有: 4×3.125Gb/s(12.5Gb/s)并行光纤模块,应用在如高端计算机系统如刀片式服务器的短距离互连; 12× 2.725Gb/s(32.7Gb/s) 并行光纤模块,应用在高端交换设备中以及背板联接中。并行光模块的应用正在逐渐走向成熟。

  当前,超级计算机、云计算、短距离高速数据通信等应用的兴起,直接推动了高速光电互连技术的迅猛发展,其市场应用规模及技术发展将会超乎人们的想象。

内容来自:电气自动化技术网
本文地址:http://www.iccsz.com//Site/CN/News/2013/08/13/20130813004901145337.htm 转载请保留文章出处
关键字: 有源器件v
文章标题:光通信有源器件的技术发展与突破
【加入收藏夹】  【推荐给好友】 
免责声明:凡本网注明“讯石光通讯咨询网”的所有作品,版权均属于光通讯咨询网,未经本网授权不得转载、摘编或利用其它方式使用上述作品。 已经本网授权使用作品的,应在授权范围内使用,反上述声明者,本网将追究其相关法律责任。
※我们诚邀媒体同行合作! 联系方式:讯石光通讯咨询网新闻中心 电话:0755-82960080-188   debison